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Discussion

Scaling Methods to tackle Hubness Hubness Analysis

Overview

Motivation - Variation with Dimensionality: We sec

that as dimesionality increases, the hubness
| problem increases. |3|

d2 Hubness Analysis for 10000 datapoints

- Local Scaling: LS(d,,) = exp(—%)
lI! ||

« Hubs are data points which keep appearing
often as nearest neighbors of large number of
other data points.
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x and y will be close neighbours only when d, ,, 13

small in comparison to both o, and oy, . - Variation with Data Size: We see that the
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= Hubness in Music Recommendation is a very - Global Scaling: Transformation of distance s g5 28] 8 |I§I e | 7 "%.,' . hubness and number of anti-hubs decrease with
active topic of research. matrices to probabilistic mutual proximity (MP) 3 s i 3 3 i 3 3 i increasing datasize but the changes are very small
Objective MP(d;,) =1—P(X <d,,UY <d;,) S e s to be conclusive.
The intuition is to increase more closely tie up rudedon mShehychew mmahanons rearon » Variation With type of Distance

« Try to create the best recommender using

different measures of similarity and scaling.

Dataset |1

the objects that have similar nearest
neighbourhoods, and repel the objects that have
dissimilar neighbourhoods. [2)]

Figure 2: Hubness Analysis for 10000 songs

Function: We see that Mahalanobis gives the
highest hubness. Points closer to the dataset
mean tend to become hubs |2]. As Mahalanobis

measures distance number of standard deviations
from the mean, we get the best results out of it.

« Variation with Scaling Method: We see
that Local Scaling Works better for our dataset
and gives better recommendations however MP is
more effective in reducing Hubness.

= 10,000 Songs

= 16 features extracted from metadata.

Some Definitions
Challenges

= Dataset in form of individual .hb files for the
SONgES.

« Hubness: Hubness is defined as the skewness of the distribution of k-occurrences /V;

- Anti Hubs: objects having a k-occurrence of zero (k = 5).

« Intrinsic Dimensionality: The intrinsic dimension is the number of dimensions necessary to
represent a data set without loss of information.

« Other Variations: We also tried variations of
MP like using a Gaussian Distribution to model
the probabilities but the results were worse off.

« Computational issues handling 10,000 songs.
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to Local Scaling.

Figure 3: Intrinsic Dimensionality with Dimesionality Figure 5: Variation With Datasize after local-scaling
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Table 1: List of Distance functions

Figure 4: Hubness with Dimesionality



